Abstract

Automated guided vehicles (AGVs) are essential components for the automation of fulfillment centers, a type of warehouse, where goods are stored on shelves and carried by AGVs. To increase the productivity in inventory management, a well-organized cooperative path control is required to transport goods to the designated picking stations. In this paper, we propose a QMIX-based scheme for the cooperative path control of multiple AGVs. Although QMIX is the one of popular cooperative multi-agent reinforcement learning algorithms, we find that QMIX alone was not enough to increase productivity in warehouse systems. So, we develop two novel techniques that can be used with QMIX: 1) <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">sequential action masking</i> that eliminates all the collision cases and 2) <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">additional local loss</i> that improves collaboration of individual AGVs. They help to encourage the AGVs to cooperate more for high productivity. By extensive simulations, we present the superiority of the proposed scheme on several layouts in fulfillment centers. The effect of cooperation among AGVs in the proposed scheme is verified through the comparison study with the existing algorithms. Additionally, we show the generalization performance by investigating the reusability of the model trained with the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.