Abstract

This paper considers fluid queuing models of Markov-modulated traffic that, due to large differences in the time-scales of events, possess structural characteristics that yield a nearly completely decomposable (NCD) state-space. Extension of domain decomposition and aggregation techniques that apply to approximating the eigensystem of Markov chains permits the approximate subdivision of the full system to a number of small, independent subsystems (decomposition phase), plus an ‘aggregative' system featuring a state-space that distinguishes only one index per subsystem (aggregation phase). Perturbation analysis reveals that the error incurred by the approximation is of an order of magnitude equal to the weak coupling of the NCD Markov chain.The study in this paper is then extended to the structure of NCD fluid models describing source superposition (multiplexing). It is shown that efficient spectral factorization techniques that arise from the Kronecker sum form of the global matrices can be applied through and combined with the decomposition and aggregation procedures. All structural characteristics and system parameters are expressible in terms of the individual sources multiplexed together, rendering the construction of the global system unnecessary.Finally, besides providing efficient computational algorithms, the work in this paper can be recast as a conceptual framework for the better understanding of queueing systems under the presence of events happening in widely differing time-scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.