Abstract

We introduce and analyze a task that we call Markovianization, in which a tripartite quantum state is transformed to a quantum Markov chain by a randomizing operation on one of the three subsystems. We consider cases where the initial state is the tensor product of $n$ copies of a tripartite state $\rho^{ABC}$, and is transformed to a quantum Markov chain conditioned by $B^n$ with a small error, using a random unitary operation on $A^n$. In an asymptotic limit of infinite copies and vanishingly small error, we analyze the Markovianizing cost, that is, the minimum cost of randomness per copy required for Markovianization. For tripartite pure states, we derive a single-letter formula for the Markovianizing costs. Counterintuitively, the Markovianizing cost is not a continuous function of states, and can be arbitrarily large even if the state is close to a quantum Markov chain. Our results have an application in analyzing the cost of resources for simulating a bipartite unitary gate by local operations and classical communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.