Abstract
In this paper, we elaborate upon the claim that clustering in the recurrent layer of recurrent neural networks (RNNs) reflects meaningful information processing states even prior to training [1], [2]. By concentrating on activation clusters in RNNs, while not throwing away the continuous state space network dynamics, we extract predictive models that we call neural prediction machines (NPMs). When RNNs with sigmoid activation functions are initialized with small weights (a common technique in the RNN community), the clusters of recurrent activations emerging prior to training are indeed meaningful and correspond to Markov prediction contexts. In this case, the extracted NPMs correspond to a class of Markov models, called variable memory length Markov models (VLMMs). In order to appreciate how much information has really been induced during the training, the RNN performance should always be compared with that of VLMMs and NPMs extracted before training as the "null" base models. Our arguments are supported by experiments on a chaotic symbolic sequence and a context-free language with a deep recursive structure. Index Terms-Complex symbolic sequences, information latching problem, iterative function systems, Markov models, recurrent neural networks (RNNs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE transactions on neural networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.