Abstract

A realistic generalization of the Markov–Dubins problem, which is concerned with finding the shortest planar curve of constrained curvature joining two points with prescribed tangents, is the requirement that the curve passes through a number of prescribed intermediate points/nodes. We refer to this generalization as the Markov–Dubins interpolation problem. We formulate this interpolation problem as an optimal control problem and obtain results about the structure of its solution using optimal control theory. The Markov–Dubins interpolants consist of a concatenation of circular (C) and straight-line (S) segments. Abnormal interpolating curves are shown to exist and characterized; however, if the interpolating curve contains a straight-line segment then it cannot be abnormal. We derive results about the stationarity, or criticality, of the feasible solutions of certain structure. In particular, any feasible interpolant with arc types of CSC in each stage is proved to be stationary, i.e., critical. We propose a numerical method for computing Markov–Dubins interpolating paths. We illustrate the theory and the numerical approach by four qualitatively different examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.