Abstract

The Ideal Observer (IO) performance has been advocated when optimizing medical imaging systems for signal detection tasks. However, analytical computation of the IO test statistic is generally intractable. To approximate the IO test statistic, sampling-based methods that employ Markov-Chain Monte Carlo (MCMC) techniques have been developed. However, current applications of MCMC techniques have been limited to several object models such as a lumpy object model and a binary texture model, and it remains unclear how MCMC methods can be implemented with other more sophisticated object models. Deep learning methods that employ generative adversarial networks (GANs) hold great promise to learn stochastic object models (SOMs) from image data. In this study, we described a method to approximate the IO by applying MCMC techniques to SOMs learned by use of GANs. The proposed method can be employed with arbitrary object models that can be learned by use of GANs, thereby the domain of applicability of MCMC techniques for approximating the IO performance is extended. In this study, both signal-known-exactly (SKE) and signal-known-statistically (SKS) binary signal detection tasks are considered. The IO performance computed by the proposed method is compared to that computed by the conventional MCMC method. The advantages of the proposed method are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.