Abstract
This paper discusses a class of Markov zero-inflated Poisson regression models for a time series of counts with the presence of excess zero relative to a Poisson distribution, in which the frequency distribution changes according to an underlying two-state Markov chain. Features of the proposed model, estimation method based on the EM and quasi-Newton algorithms, and other implementation issues are discussed. A Monte Carlo study shows that the estimation method is accurate and reliable as long as the sample size is reasonably large, and the choice of starting probabilities for the Markov process has little impact on the parameter estimates. The methodology is illustrated using daily numbers of phone calls reporting faults for a mainframe computer system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.