Abstract
Great progress has been made in face sketch synthesis in recent years. State-of-the-art methods commonly apply a Markov Random Fields (MRF) model to select local sketch patches from a set of training data. Such methods, however, have two major drawbacks. Firstly, the MRF model used cannot synthesize new sketch patches. Secondly, the optimization problem in solving the MRF is NP-hard. In this paper, we propose a novel Markov Weight Fields (MWF) model that is capable of synthesizing new sketch patches. We formulate our model into a convex quadratic programming (QP) problem to which the optimal solution is guaranteed. Based on the Markov property of our model, we further propose a cascade decomposition method (CDM) for solving such a large scale QP problem efficiently. Experimental results on the CUHK face sketch database and celebrity photos show that our model outperforms the common MRF model used in other state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.