Abstract
In this article, we derive neat matrix formulas in closed form for computing higher order moments and kurtosis of univariate Markov switching GARCH models. Then we provide asymptotic theory for sample estimators of higher order moments and kurtosis which can be used for testing normality. We also check our theory statements numerically via Monte Carlo simulations. Finally, we take advantage of our theoretical results to recognize different periods of high volatility stressing the stock markets, such as financial crisis and pandemic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.