Abstract
This paper presents Markov surfaces, a probabilistic algorithm for user-assisted segmentation of elongated structures in 3D images. The 3D segmentation problem is formulated as a path-finding problem, where path probabilities are described by Markov chains. Users define points, curves, or regions on 2D image slices, and the algorithm connects these user-defined features in a way that respects the underlying elongated structure in data. Transition probabilities in the Markov model are derived from intensity matches and interslice correspondences, which are generated from a slice-to-slice registration algorithm. Bézier interpolations between paths are applied to generate smooth surfaces. Subgrid accuracy is achieved by linear interpolations of image intensities and the interslice correspondences. Experimental results on synthetic and real data demonstrate that Markov surfaces can segment regions that are defined by texture, nearby context, and motion. A parallel implementation on a streaming parallel computer architecture, a graphics processor, makes the method interactive for 3D data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.