Abstract

We study the process of ion assembling in aqueous solution by means of molecular dynamics. In this article, we present a method to study many-particle assembly using the Markov state model formalism. We observed that at NaCl concentration higher than 1.49 mol/kg, the system tends to form a big ionic cluster composed of roughly 70-90% of the total number of ions. Using Markov state models, we estimated the average time needed for the system to make a transition from discorded state to a state with big ionic cluster. Our results suggest that the characteristic time to form an ionic cluster is a negative exponential function of the salt concentration. Moreover, we defined and analyzed three different kinetic states of a single ion particle. These states correspond to a different particle location during nucleation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.