Abstract
We investigate the Markov property and the continuity with respect to the initial conditions (strong Feller property) for the solutions to the Navier-Stokes equations forced by an additive noise. First, we prove, by means of an abstract selection principle, that there are Markov solutions to the Navier-Stokes equations. Due to the lack of continuity of solutions in the space of finite energy, the Markov property holds almost everywhere in time. Then, depending on the regularity of the noise, we prove that any Markov solution has the strong Feller property for regular initial conditions. We give also a few consequences of these facts, together with a new sufficient condition for well-posedness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.