Abstract

PurposeCredit ratings serve as an important input in several applications in risk management of the financial firms. The level of credit rating changes from time to time because of random credit risk and, thus, can be modeled by an appropriate stochastic process. Markov chain models have been widely used in the literature to generate credit migration matrices; however, emergent empirical evidences suggest that the Markov property is not appropriate for credit rating dynamics. The purpose of this article is to address the non-Markov behavior of the rating dynamics.Design/methodology/approachThis paper proposes a model based on Markov regenerative process (MRGP) with subordinated semi-Markov process (SMP) to obtain the estimates of rating migration probability matrices and default probabilities. Numerical example is given to illustrate the applicability of the proposed model with the help of historical Standard & Poor’s (S&P) credit rating data.FindingsThe proposed model implies that rating of a firm in the future not only depends on its present rating, but also on its previous ratings. If a firm gets a rating lower than its previous ratings, there are higher chances of further downgrades, and the issue is called the rating momentum. The model also addresses the ageing problem of credit rating evolution.Originality/valueThe contribution of this paper is a more general approach to study the rating dynamics and overcome the issues of inappropriateness of Markov process applied in rating dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.