Abstract
In recent era of technology, computer vision technique has grown attraction of the researchers. This technique helps to identify and classify the objects according to the application requirement. These techniques are widely used for plant leaf detection and helping to develop an automated process for plant leaf disease detection. A new approach is developed in this work for plant leaf disease detection using Markov random classification technique. MRF-based problem is formulated for disease detection. In the next stage, the general stages of computer vision classification model i.e., pre-processing and feature extraction is applied. For pre-processing, noise removal and image enhancement models are applied and feature extraction is combination of statistical features. Neighborhood pixel modeling and MRF classification models are applied to obtain the classification of input data. Performance of three classification models is compared. Study shows that proposed approach gives robust performance for plant leaf disease detection and classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Aided Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.