Abstract

This paper is concerned with a bivariate Markov process {Xt, Nt ; t ≧ 0} with a special structure. The process Xt may either increase linearly or have jump (downward) discontinuities. The process Xt takes values in [0,∞) and Nt takes a finite number of values. With these and additional assumptions, we show that the steady state joint probability distribution of {Xt, Nt ; t ≧ 0} has a matrix-exponential form. A rate matrix T (which is crucial in determining the joint distribution) is the solution of a non-linear matrix integral equation. The work in this paper is a continuous analog of matrix-geometric methods, which have gained widespread use of late. Using this theory, we present a new and considerably simplified characterization of the waiting time and queue length distributions in a GI/PH/1 queue. Finally, we show that the Markov process can be used to study an inventory system subject to seasonal fluctuations in supply and demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.