Abstract
Given a relatively prime pair of integers, $n\geq m>1$, there is associated a topological dynamical system which we refer to as an $n/m$-solenoid. It is also a Smale space, as defined by David Ruelle, meaning that it has local coordinates of contracting and expanding directions. In this case, these are locally products of the real and various $p$-adic numbers. In the special case, $m=2,n=3$ and for $n>3m$, we construct Markov partitions for such systems. The second author has developed a homology theory for Smale spaces and we compute this in these examples, using the given Markov partitions, for all values of $n\geq m>1$ and relatively prime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.