Abstract
In this study, which was carried out using a combination of machine learning and sound processing methods, a speaker recognition system and application were developed using real-time Mel Frequency Cepstral Coefficients (MFCC) features and Markov chain model classifier. A sound sample was taken from each speaker for the training of the system and these sound samples were processed in Fast Fourier Transform and MFCC feature extraction algorithms. The MFCC features were clustered using the k-means clustering algorithm. A Markov chain model was created for each speaker by using the outputs obtained after clustering. By deducting the characteristic features of the voice of the speaker, the person who was talking in the society and how long and at which time intervals they spoke during the conversation was determined in real time with high accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.