Abstract

Genetic recombination is one of the most important mechanisms that can generate and maintain diversity, and recombination information plays an important role in population genetic studies. However, the phenomenon of recombination is extremely complex, and hence simulation methods are indispensable in the statistical inference of recombination. So far there are mainly two classes of simulation models practically in wide use: back-in-time models and spatially moving models. However, the statistical properties shared by the two classes of simulation models have not yet been theoretically studied. Based on our joint research with CAS-MPG Partner Institute for Computational Biology and with Beijing Jiaotong University, in this paper we provide for the first time a rigorous argument that the statistical properties of the two classes of simulation models are identical. That is, they share the same probability distribution on the space of ancestral recombination graphs (ARGs). As a consequence, our study provides a unified interpretation for the algorithms of simulating coalescent with recombination, and will facilitate the study of statistical inference on recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.