Abstract
We consider Markov games of the general form characterized by the property that, for all stationary strategies of players, the set of game states is partitioned into several ergodic sets and a transient set, which may vary depending on the strategies of players. As a criterion, we choose the mean payoff of the first player per unit time. It is proved that the general Markov game with a finite set of states and decisions of both players has a value, and both players have e-optimal stationary strategies. The correctness of this statement is demonstrated on the well-known Blackwell's example (“Big Match”).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.