Abstract

We present new numerical algorithms and bounds for the infinite horizon, discrete stage, finite state and action Markov decision process with imprecise transition probabilities. We assume that the transition probability mass vector for each state and action is described by a finite number of linear inequalities. This model of imprecision appears to be well suited for describing statistically determined confidence limits and/or natural language statements of likelihood. The numerical procedures for calculating an optimal max-min strategy are based on successive approximations, reward revision, and modified policy iteration. The bounds that are determined are at least as tight as currently available bounds for the case where the transition probabilities are precise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.