Abstract

We explore an extension of nonatomic routing games that we call Markov decision process routing games where each agent chooses a transition policy between nodes in a network rather than a path from an origin node to a destination node, i.e. each agent in the population solves a Markov decision process rather than a shortest path problem. We define the appropriate version of a Wardrop equilibrium as well as a potential function for this game in the finite horizon (total reward) case. This work can be thought of as a routing- game-based formulation of continuous population stochastic games (mean-field games or anonymous sequential games). We apply our model to the problem of ridesharing drivers competing for customers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.