Abstract
We consider the problem of energy-efficient on-line scheduling for slice-parallel video decoders on multicore systems. We assume that each of the processors are Dynamic Voltage Frequency Scaling (DVFS) enabled such that they can independently trade off performance for power, while taking the video decoding workload into account. In the past, scheduling and DVFS policies in multi-core systems have been formulated heuristically due to the inherent complexity of the on-line multicore scheduling problem. The key contribution of this report is that we rigorously formulate the problem as a Markov decision process (MDP), which simultaneously takes into account the on-line scheduling and per-core DVFS capabilities; the power consumption of the processor cores and caches; and the loss tolerant and dynamic nature of the video decoder's traffic. In particular, we model the video traffic using a Direct Acyclic Graph (DAG) to capture the precedence constraints among frames in a Group of Pictures (GOP) structure, while also accounting for the fact that frames have different display/decoding deadlines and non-deterministic decoding complexities. The objective of the MDP is to minimize long-term power consumption subject to a minimum Quality of Service (QoS) constraint related to the decoder's throughput. Although MDPs notoriously suffer from the curse of dimensionality, we show that, with appropriate simplifications and approximations, the complexity of the MDP can be mitigated. We implement a slice-parallel version of H.264 on a multiprocessor ARM (MPARM) virtual platform simulator, which provides cycle-accurate and bus signal-accurate simulation for different processors. We use this platform to generate realistic video decoding traces with which we evaluate the proposed on-line scheduling algorithm in Matlab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.