Abstract
A new class of Gibbsian models with potentials associated with the connected components or homogeneous parts of images is introduced. For these models the neighbourhood of a pixel is not fixed as for Markov random fields, but is given by the components which are adjacent to the pixel. The relationship to Markov random fields and marked point processes is explored and spatial Markov properties are established. Extensions to infinite lattices are also studied, and statistical inference problems including geostatistical applications and statistical image analysis are discussed. Finally, simulation studies are presented which show that the models may be appropriate for a variety of interesting patterns, including images exhibiting intermediate degrees of spatial continuity and images of objects against background.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.