Abstract
A metric space X has Markov type 2, if for any reversible finite-state Markov chain {Zt} (with Z0 chosen according to the stationary distribution) and any map f from the state space to X, the distance Dt from f(Z0) to f(Zt) satisfies E(D 2 ) ≤ K 2 t E(D 2) for some K = K(X) 2) has Markov type 2; this proves a conjecture of Ball. We also show that trees, hyperbolic groups and simply connected Riemannian manifolds of pinched negative curvature have Markov type 2. Our results are applied to settle several conjectures on Lipschitz extensions and embeddings. In particular, we answer a question posed by Johnson and Lindenstrauss in 1982, by showing that for 1 < q < 2 < p < ∞, any Lipschitz mapping from a subset of Lp to Lq has a Lipschitz extension defined on all of Lp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.