Abstract
Abstract Practically relevant statistical models often give rise to probability distributions that are analytically intractable. Fortunately, we now have a collection of algorithms, known as Markov chain Monte Carlo (MCMC) , that has brought many of these models within our computational reach. MCMC is a simulation technique that allows us to make (approximate) draws from complex, high‐dimensional probability distributions. A staggering amount of research has been done on both the theoretical and applied aspects of MCMC. This article does not intend to be a complete overview of MCMC but only hopes to get the reader started in the right direction. To this end, this article begins with a general description of the types of problems that necessitate the use of MCMC. It then introduces the fundamental algorithms and addresses some general implementation issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.