Abstract
Markov chain Monte Carlo (MCMC) methods for Bayesian computation are mostly used when the dominating measure is the Lebesgue measure, the counting measure, or a product of these. Many Bayesian problems give rise to distributions that are not dominated by the Lebesgue measure or the counting measure alone. In this article we introduce a simple framework for using MCMC algorithms in Bayesian computation with mixtures of mutually singular distributions. The idea is to find a common dominating measure that allows the use of traditional Metropolis-Hastings algorithms. In particular, using our formulation, the Gibbs sampler can be used whenever the full conditionals are available. We compare our formulation with the reversible jump approach and show that the two are closely related. We give results for three examples, involving testing a normal mean, variable selection in regression, and hypothesis testing for differential gene expression under multiple conditions. This allows us to compare the three methods considered: Metropolis-Hastings with mutually singular distributions, Gibbs sampler with mutually singular distributions, and reversible jump. In our examples, we found the Gibbs sampler to be more precise and to need considerably less computer time than the other methods. In addition, the full conditionals used in the Gibbs sampler can be used to further improve the estimates of the model posterior probabilities via Rao-Blackwellization, at no extra cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.