Abstract
Mixing time quantifies the convergence speed of a Markov chain to the stationary distribution. It is an important quantity related to the performance of MCMC sampling. It is known that the mixing time of a reversible chain can be significantly improved by lifting, resulting in an irreversible chain, while changing the topology of the chain. We supplement this result by showing that if the connectivity graph of a Markov chain is a cycle, then there is an Ω ( n 2 ) lower bound for the mixing time. This is the same order of magnitude that is known for reversible chains on the cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.