Abstract

In this paper we consider pushdown graphs, i.e. infinite graphs that can be described as transition graphs of deterministic real-time pushdown automata. We consider the case where some vertices are designated as being final and we build, in a breadth-first manner, a marking of edges that lead to such vertices (i.e., for every vertex that can reach a final one, we mark all out-going edges laying on some shortest path to a final vertex).Our main result is that the edge-marked version of a pushdown graph may itself no longer be a pushdown graph, as we prove that the MSO theory of this enriched graph may be undecidable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.