Abstract

To improve the ability of market to avoid and prevent credit risk and strengthen the awareness of market risk early warning, SMOTE is used to process the unbalanced sample, and fruit fly optimization algorithm (FOA) is utilized to optimize the parameters of support vector machine (SVM), and thus an improved SVM market risk early warning model is proposed. The simulation results show that the proposed model has excellent stability and generalization ability, and it can predict market credit risk accurately. Compared with the prediction model based on FOA-SMOTE-BP and FOA-SMOTE-Logit, the proposed model performs better on the indicators of G value, F value, and AUC value, which provides a reference for market credit risk prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.