Abstract

Haloalkanoic acid dehalogenase (HAD) superfamily members serve as the predominant catalysts of metabolic phosphate ester hydrolysis in all three superkingdoms of life. Collectively, the known structural, bioinformatic, and mechanistic data offer a glimpse of the variety of HAD enzymes that have evolved in the service of metabolic expansion. Factors that have contributed to superfamily dominance include a chemically versatile nucleophile, stability of the core superfold, structural modularity of the chemistry and specificity domains, conformational coupling conferred by the topology of the inserted specificity elements, and retention of a conserved mold for stabilization of the trigonal bipyramidal transition state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.