Abstract

This protocol describes ways of monitoring spontaneous or induced neuronal degeneration in organotypic brain slice cultures. Hippocampal cultures (4-week-old) are grown in normal serum-free control medium, or exposed to the neurotoxin trimethyltin (TMT) (0.5–100 μM) for 24 h or the excitotoxic glutamate agonist kainic acid (KA) (5–25 μM) for 48 h followed by 24 h or 48 h, respectively, in normal medium. Corticostriatal slice cultures (also 4-week-old) are exposed to KA (6–24 μM) for 48 h and normal medium for control. The resulting neurodegeneration is estimated by (a) propidium iodide (PI) uptake, (b) lactate dehydrogenase (LDH) efflux to the culture medium, (c) ordinary Nissl cell staining, (d) staining by the neurodegenerative marker Fluoro-Jade (FJ), (e) neuronal microtubule degeneration by immunohistochemical staining for microtubule-associated protein 2 (MAP2), and (f) Timm sulphide silver staining for heavy metal alterations. Both hippocampal and corticostriatal slice cultures show a dose- and time-dependent increase in PI uptake and LDH efflux after exposure to TMT and KA. The mean PI uptake and the LDH efflux into the medium correlate well for both types of cultures. Both TMT and KA exposed hippocampal cultures display in vivo patterns of differential neuronal vulnerability as evidenced by PI uptake, FJ staining and MAP2 immunostaining. Corticostriatal slice cultures exposed to a high dose of KA display extensive striatal and cortical degeneration in FJ staining as suggested by a high PI uptake. A change in Timm sulphide silver staining in deep central parts of some control cultures, corresponds to areas with loss of cells in cell staining, loss of MAP2 staining, PI uptake, and FJ staining. We conclude that organotypic brain slice cultures, in combination with appropriate markers in standardized protocols, represent feasible means for studies of excitotoxic and neurotoxic compounds. Themes: Disorders of the nervous system Topics: Neurotoxicity

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.