Abstract

Accurate delivery of the prescribed dose to moving lung tumors is a key challenge in radiation therapy. Tumor tracking involves real-time specifying the target and correcting the geometry to compensate for the respiratory motion, that's why tracking the tumor requires caution. This study aims to develop a markerless lung tumor tracking method with a high accuracy. In this study, four-dimensional computed tomography (4D-CT) images of 10 patients were used, and all the slices which contained the tumor were contoured for all patients. The first four phases of 4D-CT images which contained tumors were selected as input of the software, and the next six phases were considered as the output. A hybrid intelligent method, adaptive neuro-fuzzy inference system (ANFIS), was used to evaluate motion of lung tumor. The root mean square error (RMSE) was used to investigate the accuracy of ANFIS performance for tumor motion prediction. For predicting the positions of contoured tumors, the averages of RMSE for each patient were calculated for all the patients. The results showed that the RMSE did not have a major variation. The data in the 4D-CT images were used for motion tracking instead of using markers that lead to more information of tumor motion with respect to methods based on marker location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.