Abstract

Modified Vaccinia Virus Ankara (MVA) is employed widely as an experimental and human vaccine vector for its lack of replication in mammalian cells and high expression of heterologous genes. Recombinant MVA technology can be improved greatly by combining transient host-range selection (based on the restoration in MVA of the deleted vaccinia gene K1L) with the differential expression of fluorescent proteins. Recombinant virus results from swapping a red protein gene (in the acceptor virus) with a cassette of the transfer plasmid comprising the transgene and the green marker K1Lgfp (a chimeric gene comprising K1L and EGFP). Recombinant selection is performed in the selective host RK13. Finally, in the non-selective host BHK-21, a single crossover between identical flanking regions excises the marker gene. The three types of viruses involved (red parental, green intermediate and colourless final recombinant) are visualized differentially by fluorescence microscopy or fluoro-imaging of terminal dilution microcultures, leading to a straightforward and efficient purification protocol. This method (Red-to-Green gene swapping) reduces greatly the time needed to obtain marker-free recombinant MVA and increases the reliability of the construction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.