Abstract

This study presents a quadri-ocular tracking system, which is based on PC and infrared reflective markers, for a spine surgical robot. The authors mainly focus on four tasks of the system. First of all, a two-step strategy for point correspondence of the multi-ocular system is introduced. The strategy enhances the traditional epipolar constrain for a bi-ocular system, and it decomposes the point correspondence of the multi-ocular system into several bi-ocular systems and corresponding steps to improve the speed of the system. Second, this paper proposes a fast algorithm of three-dimensional point reconstruction based on the perpendicular feet of back-projection lines. A marker constraint is also dug up to solve the combination problem of target recognition. Finally, this study uses a generalised inverse and singular value decomposition-based method to locate the pose of the target. The experiments show that the speed and accuracy of the system are satisfactory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.