Abstract

Groundnut is affected by a variety of abiotic and biotic stressors, including late leaf spot and rust, which cause significant economic loss. In this study, QTL for resistance to late leaf spot and rust from donor variety GPBD 4 were incorporated into a popular groundnut variety (ICGV 00350) through marker assisted backcross (MABC) breeding. Eight foreground SSR markers [AhXII (GM1009, GM1573 and Seq8D09) and AhXV (GM1536, GM2009, GM2079, GM2301 and IPAHM103)] linked with disease resistant QTLs were utilized in this study. A set of 217 SSR markers spanning the whole groundnut genome were employed for background analysis. Three backcrosses with recurrent parent and selfing were followed in the cross ICGV 00350 × GPBD 4. Background analysis was carried out in BC3F2; while, phenotypic confirmation for resistance was carried out in BC3F3 generation. Five advanced backcross lines in BC3F2 were found, with more than 90% recurrent parent genome. The phenotyping of the eight ILs recorded disease scores ranging from 2.0 to 3.0 for LLS and from 1.0 to 3.0 for rust disease scores. All these lines had superior characteristics compared to the recurrent parent ICGV 00350 in terms of late leaf spot and rust resistance. The enhanced ILs will be evaluated further for commercial release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call