Abstract
BackgroundAssessment of malaria endemicity at different altitudes and transmission intensities, in the era of dwindling vector densities in the highlands, will provide valuable information for malaria control and surveillance. Measurement of serum anti-malarial antibodies is a useful marker of malaria exposure that indicates long-term transmission potential. We studied the serologic evidence of malaria endemicity at two highland sites along a transmission intensity cline. An improved understanding of the micro-geographic variation in malaria exposure in the highland ecosystems will be relevant in planning effective malaria control.MethodsTotal IgG levels to Plasmodium falciparum MSP-119 were measured in an age-stratified cohort (< 5, 5-14 and ≥ 15 years) in 795 participants from an uphill and valley bottom residents during low and high malaria transmission seasons. Antibody prevalence and level was compared between different localities. Regression analysis was performed to examine the association between antibody prevalence and parasite prevalence. Age-specific MSP-119 seroprevalence data was fitted to a simple reversible catalytic model to investigate the relationship between parasite exposure and age.ResultsHigher MSP-119 seroprevalence and density were observed in the valley residents than in the uphill dwellers. Adults (> 15 years) recorded high and stable immune response in spite of changing seasons. Lower responses were observed in children (≤ 15 years), which, fluctuated with changing seasons particularly in the valley residents. In the uphill population, annual seroconversion rate (SCR) was 8.3% and reversion rate was 3.0%, with seroprevalence reaching a plateau of 73.3% by age of 20. Contrary, in the valley bottom population, the annual SCR was 35.8% and the annual seroreversion rate was 3.5%, and seroprevalence in the population had reached 91.2% by age 10.ConclusionThe study reveals the micro-geographic variation in malaria endemicity in the highland eco-system; this validates the usefulness of sero-epidemiological tools in assessing malaria endemicity in the era of decreasing sensitivity of conventional tools.
Highlights
Assessment of malaria endemicity at different altitudes and transmission intensities, in the era of dwindling vector densities in the highlands, will provide valuable information for malaria control and surveillance
The study reveals the micro-geographic variation in malaria endemicity in the highland eco-system; this validates the usefulness of sero-epidemiological tools in assessing malaria endemicity in the era of decreasing sensitivity of conventional tools
Direct determination of malaria parasite prevalence in the human population as an indicator of malaria transmission intensity has limited sensitivity when transmission is low [18,19,20], the sensitivity of the tools used in routine detection of parasitemia; microscopy and PfHRP2 based rapid diagnostic test (RDTs) presents additional challenges at low parasite densities
Summary
Assessment of malaria endemicity at different altitudes and transmission intensities, in the era of dwindling vector densities in the highlands, will provide valuable information for malaria control and surveillance. Assessing variation in malaria endemicty at different altitudes across regions with differing malaria transmission intensities can be achieved directly by determining exposure to malaria-infected mosquitoes, the entomological inoculation rate (EIR) [12], or indirectly by evaluating serological evidence of malaria exposure in the human population [13,14]. Direct determination of malaria parasite prevalence in the human population as an indicator of malaria transmission intensity has limited sensitivity when transmission is low [18,19,20], the sensitivity of the tools used in routine detection of parasitemia; microscopy and PfHRP2 based rapid diagnostic test (RDTs) presents additional challenges at low parasite densities
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.