Abstract

Reactions of 5-tert-butyl-2-hydroxy-3-methylsulfanylbenzaldehyde S-methylisothiosemicarbazone and 5-tert-butyl-2-hydroxy-3-phenylsulfanylbenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione (Hacac) and triethyl orthoformate in the presence of M(acac)2 as template source at 107 °C afforded metal complexes of the type M(II)L(1) and M(II)L(2), where M = Ni and Cu, with a new Schiff base ligand with thiomethyl (H2L(1)) and/or thiophenyl (H2L(2)) group in the ortho position of the phenolic moiety. Demetalation of NiL(1) in CHCl3 with HCl(g) afforded H2L(1). The latter reacts with Zn(OAc)2·2H2O with formation of ZnL(1). The effect of -SR groups and metal ion identity on stabilization of phenoxyl radicals generated electrochemically was studied in detail. A marked stabilization of phenoxyl radical was observed in one-electron-oxidized complexes [ML(2)](+) (M = Ni, Cu) at room temperature, as demonstrated by cyclic voltammetry, EPR spectroscopy, and UV-vis-NIR measurements. In solution, the oxidized CuL(2) and NiL(2) display intense low-energy NIR transitions consistent with their classification as metal-delocalized phenoxyl radical species. While the CuL(2) complex shows reversible reduction, reduction of NiL(2), CuL(1), and NiL(1) is irreversible. EPR measurements in conjunction with density functional theory calculations provided insights into the extent of electron delocalization as well as spin density in different redox states. The experimental room temperature spectroelectrochemical data can be reliably interpreted with the (3)[CuL(2)](+) and (2)[NiL(2)](+) oxidation ground states. The catalytic activity of synthesized complexes in the selective oxidations of alcohols has been studied as well. The remarkable efficiency is evident from the high yields of carbonyl products when employing both the CuL(2)/air/TEMPO and the CuL(2)/TBHP/MW(microwave-assisted) oxidation systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call