Abstract

Alteration in human platelet fatty acid levels with the consumption of fish oils containing eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have been well documented, but changes in the fatty acid composition of plasma plasmalogenic phospholipid under similar circumstances have not been delineated. In the present study, subjects consumed the fish oil concentrate (MaxEPA) for 6 wk followed immediately by a 6-wk recovery period with no fish oil ingestion. Plasma total choline glycerophospholipid (GPC) and ethanolamine glycerophospholipid (GPE) subclasses isolated from blood samples obtained at 0, 3, 6, 9 and 12 wk of the experimental period were analyzed for fatty acid composition via thin-layer and gas-liquid chromatographic techniques. Consumption of fish oil for 3 or 6 wk significantly elevated the content of n-3 fatty acids while concomitantly decreasing n-6 fatty acid levels in plasma total GPC and in diacyl and alkenylacyl (plasmalogen) GPE. Alkenylacyl GPE exhibited the greatest alteration of both n-3 and n-6 fatty acid levels. Following 6 wk of supplementation with fish oil, EPA rose by 24.6 mol% in alkenylacyl GPE compared to increases of 6.7 and 7.1 mol% in diacyl GPE and total GPC, respectively. The increase in EPA (from 5.0 to 29.6 mol%) in plasma alkenylacyl GPE represents amongst the highest enrichment of EPA in any lipid yet reported in human subjects. DHA also rose by 8.0, 4.8, and 3.1 mol% in alkenylacyl GPE, diacyl GPE, and total GPC, respectively. Alkenylacyl GPE exhibited the greatest mol% decline (by 18.7 mol%) in arachidonic acid (AA, 20:4n-6) following 6 wk of fish oil supplementation. The corresponding decreases of AA in diacyl GPE and total GPC were 8.7 and 1.8 mol%, respectively. Following the 6 wk recovery period, n-3 and n-6 fatty acid levels had returned to pre-supplementation values. The marked enrichment of alkenylacyl GPE in n-3 fatty acids, especially EPA, may be of significance with respect to a unique role for this plasma phospholipid subclass in attenuating certain lipoprotein-mediated cardiovascular effects as observed with fish/fish oil consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call