Abstract

The Jolly-Seber method, which allows for both death and immigration, is easy to apply but often requires a larger number of parameters to be estimated tha would otherwise be necessary. If (i) survival rate, phi, or (ii) probability of capture, p, or (iii) both phi and p can be assumed constant over the experimental period, models with a reduced number of parameters are desirable. In the present paper, maximum likelihood (ML) solutions for these three situations are derived from the general ML equations of Jolly [1979, in Sampling Biological Populations, R. M. Cormack, G. P. Patil and D. S. Robson (eds), 277-282]. A test is proposed for heterogeneity arising from a breakdown of assumptions in the general Jolly-Seber model. Tests for constancy of phi and p are provided. An example is given, in which these models are fitted to data from a local butterfly population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.