Abstract

Maritime vessels provide a wealth of data concerning location, trajectories, and speed. However, while these data are meticulously monitored and logged to maintain course, they can also provide a wealth of meta information. This work explored the potential of data-driven techniques and applied artificial intelligence (AI) to tackle two challenges. First, vessel classification was explored through the use of extreme gradient boosting (XGboost). Second, vessel trajectory time series forecasting was tackled through the use of long-short-term memory (LSTM) networks. Finally, due to the strong dependence of AI model performance on proper hyperparameter selection, a boosted version of the well-known particle swarm optimization (PSO) algorithm was introduced specifically for tuning the hyperparameters of the models used in this study. The introduced methodology was applied to real-world automatic identification system (AIS) data for both marine vessel classification and trajectory forecasting. The performance of the introduced Boosted PSO (BPSO) was compared to contemporary optimizers and showed promising outcomes. The XGBoost model tuned using boosted PSO attained an overall accuracy of 99.72% for the vessel classification problem, while the LSTM model attained a mean square error (MSE) of 0.000098 for the marine trajectory prediction challenge. A rigid statistical analysis of the classification model was performed to validate outcomes, and explainable AI principles were applied to the determined best-performing models, to gain a better understanding of the feature impacts on model decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call