Abstract

SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2’s spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein’s RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.

Highlights

  • We have summarized the findings of approximately 80 research studies published in the last 25 years on marine sulfated polysaccharides (MSPs) that exhibited potential antiviral effects against a total

  • The red-algae-derived MSPs exhibited greater efficacy against several viruses; the distribution was highly skewed towards herpes simplex viruses (HSV), which received most of the research effort (Figure S1)

  • To challenge highly virulent SARS CoV-2 and its emerging mutations, which have cost millions of lives, there is an urgent need to ramp up drug discovery pipelines within a short timeframe

Read more

Summary

Introduction

Mother Nature remains an outstanding hub for valuable natural compounds that have been used for multiple purposes since ancient times by our ancestors, including pharmaceutical, biomedical, nutritional, and cosmetics applications. Among the dozens of natural product groups, polysaccharides are macromolecular polymeric carbohydrate molecules comprised of large chains of monosaccharide units. They are widely found in animals, plants, and microorganisms, and their functions are mainly either structureor storage-related. Many studies have revealed that natural polysaccharides and their chemically modified derivatives have significant inhibitory activities against viral diseases such as human immunodeficiency virus (HIV) and herpes simplex virus (HSV) [1,2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call