Abstract

Models for marine reserve design have been developed primarily with 'reef fish' life histories in mind: sedentary adults in patches connected by larval dispersal. However, many fished species undertake ontogenetic migrations, such as from nursery grounds to adult spawning habitats, and current theory does not fully address the range of reserve options posed by that situation. I modelled a generic species with ontogenetic migration to investigate the possible benefits of reserves under three alternative scenarios. First, the fishery targets adult habitat, and reserves can sustain yields under high exploitation, unless habitat patches are well connected. Second, the fishery targets the nursery, and reserves are highly effective, regardless of connectivity patterns. Third, the fishery targets both habitats, and reserves only succeed if paired on adjacent, well-connected nursery and adult patches. In all cases, reserves can buffer populations against overexploitation but would not enhance fishery yield beyond that achievable by management without reserves. These results summarize the general situations in which management using reserves could be useful for ontogenetically migrating species, and the type of connectivity data needed to inform reserve design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call