Abstract
A Boundary Element Method (BEM) hydrodynamics combined with a flow-alignment technique to evaluate blades shed vorticity is presented and applied to a marine propeller in open water. Potentialities and drawbacks of this approach in capturing propeller performance, slipstream velocities, blade pressure distribution and pressure disturbance in the flow-field are highlighted by comparisons with available experiments and RANSE results. In particular, correlations between the shape of the convected vortex- sheet and the accuracy of BEM results are discussed throughout the paper. To this aim, the analysis of propeller thrust and torque is the starting point towards a detailed discussion on the capability of a 3-D free-wake BEM hydrodynamic approach to describe the local features of the flow-field behind the propeller disk, in view of applications to propulsive configurations where the shed wake plays a dominant role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.