Abstract

Cardiovascular diseases (CVDs) have emerged as a major threat to global health resulting in a decrease in life expectancy with respect to humans. Thrombosis is one of the foremost causes of CVDs, and it is characterized by the unwanted formation of fibrin clots. Recently, microbial fibrinolytic enzymes due to their specific features have gained much more attention than conventional thrombolytic agents for the treatment of thrombosis. Marine microorganisms including bacteria and microalgae have the significant ability to produce fibrinolytic enzymes with improved pharmacological properties and lesser side effects and, hence, are considered as prospective candidates for large scale production of these enzymes. There are no studies that have evaluated the fibrinolytic potential of marine fungal-derived enzymes. The current review presents an outline regarding isolation sources, production, features, and thrombolytic potential of fibrinolytic biocatalysts from marine microorganisms identified so far.

Highlights

  • Thrombosis is a major cause of cardiovascular diseases (CVDs) including acute myocardial infarction, ischemic heart disease, valvular heart disease, peripheral vascular disease, arrhythmias, high blood pressure and stroke, and it is a leading cause of death worldwide [1]

  • Many fibrinolytic enzymes from natural resources, such as snakes [18], earthworms [19,20], insects [21], plants [22], mushrooms [23], microorganisms [24,25] and fermented foods such as Chungkook-jang [26] and Tempeh [27], have been identified and studied. Even though these enzymes have been characterized from a wide range of different sources, microbial fibrinolytic enzymes are considered attractive tools due to their features, such as enhanced specificity [8], low production cost [8], comparatively high yield [28] and the possibility to be genetically modified by recombinant DNA technology and protein engineering approaches [29]

  • The current review presents an overview regarding the resources, production, properties and thrombolytic activity of fibrinolytic enzymes from marine microbes identified so far

Read more

Summary

Introduction

Thrombosis is a major cause of cardiovascular diseases (CVDs) including acute myocardial infarction, ischemic heart disease, valvular heart disease, peripheral vascular disease, arrhythmias, high blood pressure and stroke, and it is a leading cause of death worldwide [1]. Many fibrinolytic enzymes from natural resources, such as snakes [18], earthworms [19,20], insects [21], plants [22], mushrooms [23], microorganisms [24,25] and fermented foods such as Chungkook-jang [26] and Tempeh [27], have been identified and studied Even though these enzymes have been characterized from a wide range of different sources, microbial fibrinolytic enzymes are considered attractive tools due to their features, such as enhanced specificity [8], low production cost [8], comparatively high yield [28] and the possibility to be genetically modified by recombinant DNA technology and protein engineering approaches [29]. The current review presents an overview regarding the resources, production, properties and thrombolytic activity of fibrinolytic enzymes from marine microbes identified so far

Marine Microorganisms as Sources of Fibrinolytic Enzyme
Purification of Fibrinolytic Enzymes
Physicochemical Properties of Fibrinolytic Enzymes
Fibrinogen Lytic Activity
Amidolytic and Kinetic Properties of Marine Microbial Fibrinolytic Enzymes
Construction of Genetically Engineered Strains
Fermentation Approach
Thrombolytic Activity of Marine Microbial Fibrinolytic Enzymes
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call