Abstract

Against the background of climate warming, marine heatwaves (MHWs) and terrestrial drought events have become increasingly frequent in recent decades. However, the combined effects of MHWs and terrestrial drought on CO2 uptake in marginal seas are still unclear. The East China Sea (ECS) experienced an intense and long-lasting MHW accompanied by an extreme terrestrial drought in the Changjiang basin in the summer of 2022. In this study, we employed multi-source satellite remote sensing products to reveal the patterns, magnitude, and potential drivers of CO2 flux changes in the ECS resulting from the compounding MHW and terrestrial drought extremes. The CO2 uptake of the ECS reduced by 17.0% (1.06 Tg C) in the latter half of 2022 and the Changjiang River plume region shifted from a CO2 sink to a source (releasing 0.11 Tg C) in July-September. In the majority of the ECS, the positive sea surface temperature (SST) anomaly during the MHW diminished the solubility of CO2 in seawater, thereby reducing CO2 uptake. Moreover, the reduction in nutrient input associated with terrestrial drought, which is unfavorable to phytoplankton growth, further reduced the capacity of CO2 uptake. Meanwhile, the CO2 sink doubled for the offshore waters of the ECS continental shelf in July-September 2022, indicating the complexity and heterogeneity of the impacts of extreme climatic events in marginal seas. This study is of great significance in improving the estimation results of CO2 fluxes in marginal seas and understanding sea–air CO2 exchanges against the background of global climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.