Abstract
In this paper, Finite Element Analysis was used to simulate ship hatch covers with different grid geometries viz. Square grid, Inclined grid, Diamond grid and Honeycomb grid. The entire finite element analysis results were generated by ANSYS® 2022 workbench environment. The hatch cover provides an air tight barrier protection for the cargo. For the present simulation the original hatch cover dimensions are used (21000 × 14000 × 300 mm). The principle objective of the present paper is aimed at proposing a light-weight material, so called glass fibre reinforced plastic material over the existing steel to reduce the weight for the cargo ship to improve the efficiency by reducing fuel consumption so that dead weight is downgraded. Glass fibre reinforced hatch cover also reduces man power for the process of handling the hatch cover. Based upon the finite element analysis outcomes of different grid geometries are Square, Inclined, Diamond, Honeycomb optimal core grid of hatch cover was chosen. A scaled down model of hatch cover using glass fibre reinforced plastic with an optimal grid structure has been also developed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.