Abstract

This paper presents an approach that allows production of benthic substrate and habitat maps in fjord environments. This approach is used to support the management of the Gilbert Bay Marine Protected Area (MPA) in southeastern Labrador, Atlantic Canada. Multibeam sonar-derived bathymetry, seabed slope, and acoustic reflectance (backscatter) were combined using supervised classification methods and GIS with ground-truthed benthic sampling in order to derive maps of the substrates and main benthic habitats. Six acoustically distinct substrate types were identified in the fjord, and three additional substrate types without a unique acoustic signature were recognized. Ordination by multidimensional scaling and analysis of similarity generalized these to four acoustically distinct habitat types. Greatest within-habitat (alpha) diversity was found in the coralline-algae encrusted gravel habitat. Greatest between-habitat (beta) diversity was found in the management Zones 1 and 2, which have the highest level of protection. The study confirmed that the zoning plan for the MPA, which was designed to protect spawning and juvenile fish habitat for a local genetically distinct population of Atlantic cod, afforded highest levels of protection to areas with highest habitat diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.