Abstract
Marine guided waves are strongly dispersive and commonly observed in seismic surveys worldwide in areas of shallow water with a hard seafloor. They are energetic and can obscure deeper reflection signals. We have conducted several ultrasonic physical modeling experiments to observe marine guided waves. The guided-wave dispersion curves from these surveys fit theoretical calculations very well. We next developed a new method to extract the subbottom S-wave velocity and density from water column guided waves using least-squares inversion. We have also developed a dispersion-curve filter, in the velocity-frequency domain, to attenuate the guided waves. We then applied these techniques to the physical modeling data, which have different water depths and different subbottom materials. The extracted results (S-wave velocity, density, and water depth) match the actual values well. The dispersion-domain filter clarifies reflections by attenuating the guided waves, which benefits further processing and interpretation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.