Abstract

BackgroundMounting evidences indicate that oxidative stress, neuroinflammation, and dysregulation of gut microbiota are related to neurodegenerative disorders (NDs). Butyrolactone I (BTL-I), a marine fungal metabolite, was previously reported as an in vitro neuroprotectant and inflammation inhibitor. However, little is known regarding its in vivo effects, whereas zebrafish (Danio rerio) could be used as a convenient in vivo model of toxicology and central nervous system (CNS) diseases.MethodsHere, we employed in vivo and in silico methods to investigate the anti-NDs potential of BTL-I. Specifically, we established a cognitive deficit model in zebrafish by intraperitoneal (i.p.) injection of aluminum trichloride (AlCl3) (21 μg) and assessed their behaviors in the T-maze test. The proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) as well as acetylcholinesterase (AChE) activity or glutathione (GSH) levels were assayed 24 h after AlCl3 injection. The intestinal flora variation of the zebrafish was investigated by 16S rDNA high-throughput analysis. The marine fungal metabolite, butyrolactone I (BTL-I), was used to modulate zebrafish cognitive deficits evoked by AlCl3 and evaluated about its effects on the above inflammatory, cholinergic, oxidative stress, and gut floral indicators. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of BTL-I were studied by the in silico tool ADMETlab.ResultsBTL-I dose-dependently ameliorated AlCl3-induced cognitive deficits in zebrafish. While AlCl3 treatment elevated the levels of central and peripheral proinflammatory cytokines, increased AChE activity, and lowered GSH in the brains of zebrafish, these effects, except GSH reduction, were reversed by 25–100 mg/kg BTL-I administration. Besides, 16S rDNA high-throughput sequencing of the intestinal flora of zebrafish showed that AlCl3 decreased Gram-positive bacteria and increased proinflammatory Gram-negative bacteria, while BTL-I contributed to maintaining the predominance of beneficial Gram-positive bacteria. Moreover, the in silico analysis indicated that BTL-I exhibits acceptable drug-likeness and ADMET profiles.ConclusionsThe present findings suggest that BTL-I is a potential therapeutic agent for preventing CNS deficits caused by inflammation, neurotoxicity, and gut flora imbalance.

Highlights

  • Mounting evidences indicate that oxidative stress, neuroinflammation, and dysregulation of gut microbiota are related to neurodegenerative disorders (NDs)

  • The in silico analysis indicated that Butyrolactone I (BTL-I) exhibits acceptable drug-likeness and ADMET profiles

  • The present findings suggest that BTL-I is a potential therapeutic agent for preventing central nervous system (CNS) deficits caused by inflammation, neurotoxicity, and gut flora imbalance

Read more

Summary

Introduction

Mounting evidences indicate that oxidative stress, neuroinflammation, and dysregulation of gut microbiota are related to neurodegenerative disorders (NDs). Oxidative stress and inflammation play critical roles in neuronal apoptosis [5,6,7,8,9] and may, be considered potential risk factors for NDs. Various factors, including peripheral or brain inflammation, β-amyloid peptide (Aβ), pathogenic infection and toxins (e.g., aluminum), activate brain microglial cells [10,11,12]. The release of proinflammatory cytokines and reactive oxygen species (ROS) trigger and amplify damage to neurons and astrocytes, whereas oxidative stress and inflammation further promote neuroinflammation, which in turn activates microglia, eventually impairing neurons and astrocytes [5, 7, 12,13,14]. Oxidative stress and inflammation are involved in cyclin-dependent kinase 5 (CDK 5) activation-induced Tau hyperphosphorylation, resulting in neurofibrillary tangles, another important pathological marker of AD [5]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.