Abstract

AbstractSudden shifts in marine plankton communities in response to environmental changes are of special concern because of their low predictability and high potential impacts on ocean ecosystems. We explored how anthropogenic climate change influences the spatial extent and frequency of changepoints in plankton populations by comparing the behavior of a plankton community in a coupled Earth system model under pre‐industrial, historical 20th century, and projected 21st century forcing. The ocean areas where surface ocean temperature, nutrient concentrations, and different plankton types exhibited changepoints expanded over time. In contrast, regional hotspots where changepoints occur frequently largely disappeared. Heterotrophy and larger organism sizes were associated with more changepoints. In the pre‐industrial and 20th century, plankton changepoints were associated with shifts in physical fronts, and more often with changepoints for iron and silicate than for nitrate and phosphate. In the 21st century, climate change disrupts these interannual‐variability‐driven changepoint patterns. Together, our results suggest anthropogenic climate change may drive less frequent but more widespread changepoints simultaneously affecting several components of pelagic food webs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.